skip to main content


Search for: All records

Creators/Authors contains: "Wood, Perry L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many processes of biological diversification can simultaneously affect multiple evolutionary lineages. Examples include multiple members of a gene family diverging when a region of a chromosome is duplicated, multiple viral strains diverging at a “super-spreading” event, and a geological event fragmenting whole communities of species. It is difficult to test for patterns of shared divergences predicted by such processes because all phylogenetic methods assume that lineages diverge independently. We introduce a Bayesian phylogenetic approach to relax the assumption of independent, bifurcating divergences by expanding the space of topologies to include trees with shared and multifurcating divergences. This allows us to jointly infer phylogenetic relationships, divergence times, and patterns of divergences predicted by processes of diversification that affect multiple evolutionary lineages simultaneously or lead to more than two descendant lineages. Using simulations, we find that the method accurately infers shared and multifurcating divergence events when they occur and performs as well as current phylogenetic methods when divergences are independent and bifurcating. We apply our approach to genomic data from two genera of geckos from across the Philippines to test if past changes to the islands’ landscape caused bursts of speciation. Unlike previous analyses restricted to only pairs of gecko populations, we find evidence for patterns of shared divergences. By generalizing the space of phylogenetic trees in a way that is independent from the likelihood model, our approach opens many avenues for future research into processes of diversification across the life sciences. 
    more » « less
  2. Burbrink, Frank (Ed.)
    Abstract In cryptic amphibian complexes, there is a growing trend to equate high levels of genetic structure with hidden cryptic species diversity. Typically, phylogenetic structure and distance-based approaches are used to demonstrate the distinctness of clades and justify the recognition of new cryptic species. However, this approach does not account for gene flow, spatial, and environmental processes that can obfuscate phylogenetic inference and bias species delimitation. As a case study, we sequenced genome-wide exons and introns to evince the processes that underlie the diversification of Philippine Puddle Frogs—a group that is widespread, phenotypically conserved, and exhibits high levels of geographically based genetic structure. We showed that widely adopted tree- and distance-based approaches inferred up to 20 species, compared to genomic analyses that inferred an optimal number of five distinct genetic groups. Using a suite of clustering, admixture, and phylogenetic network analyses, we demonstrate extensive admixture among the five groups and elucidate two specific ways in which gene flow can cause overestimations of species diversity: 1) admixed populations can be inferred as distinct lineages characterized by long branches in phylograms; and 2) admixed lineages can appear to be genetically divergent, even from their parental populations when simple measures of genetic distance are used. We demonstrate that the relationship between mitochondrial and genome-wide nuclear $p$-distances is decoupled in admixed clades, leading to erroneous estimates of genetic distances and, consequently, species diversity. Additionally, genetic distance was also biased by spatial and environmental processes. Overall, we showed that high levels of genetic diversity in Philippine Puddle Frogs predominantly comprise metapopulation lineages that arose through complex patterns of admixture, isolation-by-distance, and isolation-by-environment as opposed to species divergence. Our findings suggest that speciation may not be the major process underlying the high levels of hidden diversity observed in many taxonomic groups and that widely adopted tree- and distance-based methods overestimate species diversity in the presence of gene flow. [Cryptic species; gene flow; introgression; isolation-by-distance; isolation-by-environment; phylogenetic network; species delimitation.] 
    more » « less
  3. null (Ed.)
    Genome-scale data have greatly facilitated the resolution of recalcitrant nodes that Sanger-based datasets have been unable to resolve. However, phylogenomic studies continue to use traditional methods such as bootstrapping to estimate branch support; and high bootstrap values are still interpreted as providing strong support for the correct topology. Furthermore, relatively little attention has been given to assessing discordances between gene and species trees, and the underlying processes that produce phylogenetic conflict. We generated novel genomic datasets to characterize and determine the causes of discordance in Old World treefrogs (Family: Rhacophoridae)—a group that is fraught with conflicting and poorly supported topologies among major clades. Additionally, a suite of data filtering strategies and analytical methods were applied to assess their impact on phylogenetic inference. We showed that incomplete lineage sorting was detected at all nodes that exhibited high levels of discordance. Those nodes were also associated with extremely short internal branches. We also clearly demonstrate that bootstrap values do not reflect uncertainty or confidence for the correct topology and, hence, should not be used as a measure of branch support in phylogenomic datasets. Overall, we showed that phylogenetic discordances in Old World treefrogs resulted from incomplete lineage sorting and that species tree inference can be improved using a multi-faceted, total-evidence approach, which uses the most amount of data and considers results from different analytical methods and datasets. 
    more » « less
  4. null (Ed.)
    Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. Here, we used RADseq to identify sex-specific markers in two species of Burmese bent-toed geckos. We uncovered XX/XY sex chromosomes in Cyrtodactylus chaunghanakwaensis and ZZ/ZW sex chromosomes in Cyrtodactylus pharbaungensis. This is the third instance of intrageneric turnover of sex chromosomes in geckos. Additionally, Cyrtodactylus are closely related to another genus with intrageneric turnover, Hemidactylus. Together, these data suggest that sex chromosome turnover may be common in this clade, setting them apart as exceptionally diverse in a group already known for diverse sex determination systems. 
    more » « less
  5. An integrative taxonomic analysis based on morphology, color pattern, and the mitochondrial gene ND2 recovered four new species of Hemiphyllodactylus Bleeker that are endemic to the Shan Plateau or Salween Basin in eastern Myanmar. Hemiphyllodactylus ngwelwini sp. nov. from the Shan Plateau is part of the earlier described “eastern Myanmar clade” renamed herein as the north lineage and H. kyaiktiyoensis sp. nov. and H. pinlaungensis sp. nov. of the Shan Plateau and H. zwegabinensis sp. nov. of the Salween Basin compose an entirely new Burmese clade herein referred to as the south lineage. Although the north and south lineages come within 46 km of one another on the Shan Plateau, they are not sister lineages but sequentially separated by two lineages from Yunnan, China and another from northwestern Thailand. Hemiphyllodactylus zwegabinensis sp. nov. is the first species of this genus to be recorded from the Salween Basin and is known only from a wind-blown cloud forest on the top of the insular, karstic mountain Zwegabin in Kayin State. All other Burmese species except for H. typus, are endemic to the various localities throughout the Shan Plateau. These four new species bring the total number of Hemiphyllodactylus in Myanmar to at least 10 which is certainly an extreme underestimate of the diversity of this genus given that we discover new species at every upland locality we survey. 
    more » « less
  6. An integrative taxonomic analysis of the 10 species of the Cyrtodactylus sinyineensis group based on squamation, color pattern, and the mitochondrial gene NADH dehydrogenase subunit 2 (ND2) and its flanking tRNA regions, recovered the newly discovered populations from Datt Kyaik and Taung Wine Hills in Kayin State as the new species Cyrtodactylus dattkyaikensis sp. nov. and C. taungwineensis sp. nov. The Maximum Likelihood and Bayesian phylogenetic estimates supported C. dattkyaikensis sp. nov. as the sister species of C. bayinnyiensis and C. taungwineensis sp. nov. as the sister species of C. sinyineensis. Each new species is differentially diagnosable from all other C. sinyineensis group species based on their morphological placement in multivariate space and several statistically significant mean differences is meristic squamation and color pattern data. The C. sinyineensis group ranges across an archipelago of karstic habitat-islands in the Salween Basin of southern Myanmar. The discovery of these new species continues to underscore the unprecedented high degree of diversity and site-specific endemism in this relatively small region and the urgent need for the conservation of its karstic terranes. 
    more » « less